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 Timber knots recognition is of prime importance to further determine the 

timber grade. The recognition is normally based on the human expert’s eyes 
in which can lead to some flaws based on human limitations and weaknesses. 

The use of X-ray can cause emits radiation and can be dangerous to the 

workers. This paper addresses the employment of computational methods for 

knot detection. A pre-processing and feature extraction methods include 
contrast stretching, median blur and thresholding, gray scale and local binary 

pattern were used. More than 400 datasets of knot images of the tropical 

timbers, namely Acacia and Hevea Brasiliensis have been tested using  

C-support vector machine as a knot classifier. The findings demonstrate 
different performances for three types of kernel. Linear kernel function 

outperformed both radial basis function and polynomial kernel functions for 

Acacia and Hevea Brasiliensis species. Both species classifications using 

linear kernel have managed to achieve a promising accuracy. Knots 

classification with the used of support vector machine has shown a promising 

result to improve the classifier and test with different types  

of tropical timbers. 
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1. INTRODUCTION  

Timber is the only natural material structural that fully renewable and recyclable material. 

Furthermore, it does not contribute to greenhouse gas emissions. Timber can be formed in a various of shapes 

and sizes [1]. Timber has been a high strength to weight ratio. Thus, it makes the timber bear a lot of its own 

self-weight and the most efficiently used in structures [2]. However, the strength of timber can be affected by 

defects. The timber defects occurred naturally such as knots, slope of grain, gum veins and reaction wood. 

Due to this property, timber can be graded according to defects. The defects can be identified through knot 

identification as it is one of the criteria for timber grading stated in Malaysian Standard [3]. The knot is used 

to measure the straightness of the timbers. The diameter can affect the grade of timber, more bigger knots 

leads to the lower quality of timber grade [4]. Thus, identification of timber knot timber the procedure of 

timber grading.  

Timber expert recognized knots on timber surfaces based on what he\she saw with his/her naked 

eyes [5]. However, because this requires human works, sometimes it will lead to some flaws based on human 

limits and weaknesses. The performance of this method is inconsistent because the judgement of human is 

very subjective [5-6] and led to low accuracy in classification of knot for timber grading because of eye 

fatigue [7]. Moreover, it is tedious and time consuming [8]. Currently, the most used method for automatic 

timber grading is based on grading machine, where it uses a scanning method to detect the knots based on 
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timber image. Some machines use X-ray method to detect knots in the timber, however, because X-ray is 

well-known to emit radiation, it is dangerous to the workers [9]. Also, enlargement of image from X-ray 

become less sharp and more noise [10]. Hence, it caused less accuracy and efficiency in classifying the 

knot’s type [7]. Despite of all these problems and limitations, classification of knot in timber grading process 

is an imperative in the manufacture of the end product [11-12]. Delays and inaccurate classification of knots 

will affect the subsequent process [11]. 

For the past decades, there have been many developments of system regarding the timber such as 

detection and classification of defects on plant [13-15] on timber’s surface [7]. Using visual information 

about timber defects is reasonable for detection techniques because the color and texture of timber’s defects 

are different [9]. A few of previous studies have been discussed about the knots on timber’s surface. 

Timber’s knots are the first defects considered by the timber’s company for timber price and visual timber 

grading [4]. 

There are many detection methods used to detect on timber’s surface. Song et al. used image block 

for replacement of image pixels. Image block applied for defect detection [9]. Most past, researchers used 

segmentation algorithm, but it is one of the hardest tasks in the image processing field. Hence, they used 

image block. Gu et al. applied simple edge detection algorithm and edge chaining to detect the outer 

boundary of knots [7]. For the unconnected boundary is closed by B-spline. The outer boundary of knots is 

important as knot image divided into three parts based on its which is interior, exterior and boundary region. 

Stretching contrast and thresholding method in pre-processing used by [16]. Stretching contrast is darkened 

the dark area and brightened the bright area. The thresholding with the Otsu’s method and morphological 

operations is applied to detect the knots timber. However, another study from [13], the defects are detected 

by threading with entropy maximization and followed by median filtering. The false negative rate is lower 

than thresholding with Otsu’s method and Morphological operations with the same data. Median filtering and 

Sobel operator to detect edges is employed [20]. 

Various of techniques are applied for color and texture extraction of timber as such percentile color 

image histogram to extract the color features and eigenvector to extract the texture features of an image block 

matrix [9]. Despite that, HSV (Hue, Saturation, Value) is applied to overcome the sensitivity of the percentile 

color histogram to the intensity in RGB color spaces. However, the value of these two techniques needs to 

normalize before combine the techniques for input in Support Vector Machine (SVM) classifier. Gu et al. 

pseudo colour to filter images and average of pseudo color values computed by non-linear order statistic 

filters [7] meanwhile Hittawe et al. used extraction of Speed Up Robust Features (SURF) and another study 

used both SURF and Local Binary Pattern (LBP) to extract the features [16]. 

Many machine learning methods employed in improving timber utilization as an initiative in the 

direction towards industrial 4.0.  Some of the methods such as genetic algorithm, particle swarm optimization 

and Monte Carlo were used in assisting the timber structural design research for tropical timbers [17-19]. 

However, generally most of classifiers applied from the previous studies are SVM, Artificial Neural Network 

and few hybrid systems for non-tropical timber knot classification. There was research use a few machine 

learning techniques to define quality of wood based on knots timber with the same technique of image 

processing. Vieira segmentation technique [5] and followed by Haralick Descriptor to extract the features. It 

shows SVM got the highest accuracy with 87%. SVM non-linear Gaussian kernel to detect knots and other 

defects with average accuracy 78% [9]. However, 90% for the knot detection alone. Both researches by [13] 

used Bag of Words to represent features extraction and as an input data in linear SVM classifier to detect 

knots and identify the number of knots. It was found that combination of feature extraction SURF and LBP 

got more than 90% [7] achieved 96% with tree-structure SVM technique to classify types of knots. Another 

research conducted by [20] used Backpropagation Artificial Neural Network with average accuracy 86.7%, 

but 80% for knot detection only. Therefore, this paper discusses on the identification on timber’s surface and 

evaluation of knot classification using SVM for tropical timbers. 

 

 

2. DATA ACQUISITION AND IMAGE PRE-PROCESSING 

Three species of tropical hardwood timber namely Hevea Brasiliensis, Meranti and Acacia tree were 

collected. The data collection conducted at Konsortium Peka Sdn Bhd, Lanchang, Pahang and Woodsfield 

Resources Sdn Bhd Pasir Gudang, Johor State, Malaysia. All of knots timber images data sets have been 

processed with image processing technique. Image processing is to let the system to understand the data and 

detect the knots timber. The selected features have been extracted from the input in the classifier.  

All original images have been cropped to get the knot image only. All of the cropped images were 

resized by using ImageMagicDisplay tool. All knot images are resized to 300x150 pixels. Table 1 

demonstrates the image processing steps. 
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Table 1. Image processing 
Process Result 

Convert image into grayscale. 

 

Image enhancement by using Contrast 

Stretching. 

 

Reduce image’s noise by using Median Blurr. 

 

Segmentation of image has been done by using 

thresholding with Otsu’s method. 

 

Texture has been extracted by using Local 

Binary Pattern. 

 

 

 

Texture has been extracted by Local Binary Pattern (LBP) to distinguish sounds and unsound knots. 

There are two experiments conducted for both images. Table 2 shows the images being extracted after reduce 

noise image and segmentation. The value of LBP for each pixel of the image become as an input into SVM 

classifier. Then, the image processing steps have been done, all the finalized data were saved into a .csv file. 

This data then been used as an input for SVM. 

 

 

Table 2. Result of image after extracted by LBP 

Process 
Contrast Stretching: 5th 

percentile and 20th percentile 

Contrast Stretching: 10th 

percentile and 98th percentile 

LBP after 

reduce noise 

image: 

  

LBP after 

segmentation: 

  
 

 

3. C-SVM EMPLOYMENT 

The value from feature extraction is stored in csv file. After that, the data was split into two sections 

which are data for training and data for testing. Split the data was then fed into SVM classifier to train and 

test purposes. For the output, SVM trained model was used to determine the type of knots which are sound 

knot and unsound knot. The steps in SVM implementation is shown in Figure 1. 
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Figure 1. SVM Implementation steps 

 

 

For this type of SVM, training involves the minimization of the error function to solve the following 

the primal optimization: 

 
1

2
𝑤𝑇𝑤 + 𝐶 ∑ 𝜉𝑖

1
𝑖=1         (1) 

 

Subject to the following constraint (2): 
 

 
              (2) 

 

where C is the regularization parameter, w is the vector of coefficients, b is a bias that constant, 

and  represents parameters for handling non-separable data. The index i labels the N training cases. 

Furthermore,  represents the class labels and  represents the independent variables. The  represent 

kernel applied. Due to the possible high dimensionality of the vector variable w, the following dual problem 

is solved.  

 
1

2
𝛼𝑇𝑄𝛼 − ⅇ𝑇𝛼          (3) 

 

Subject to  

 

𝑦𝑇𝛼 = 0 

0 ≤ 𝛼𝑖 ≤ 𝐶      𝑖 = 1, . . 𝑙# 
              (4) 

 

where e = [1, . . . , 1]𝑇  is the vector of all ones, Q is an 𝑙 by 𝑙 positive semidefinite matrix, 𝑄𝑖𝑗 =

𝑦𝑖𝑦𝑗𝐾( 𝑥𝑖 ,  𝑥𝑗 ), and 𝐾( 𝑥𝑖 ,  𝑥𝑗 )  ≡  𝜑( 𝑥𝑖)
𝑇  𝜑( 𝑥𝑗 ) is the kernel function.  

  

   𝑤 = ∑ 𝑦𝑖𝛼𝑖𝜙(𝑥𝑖) 𝑙
𝑖=1         (5) 
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After problem (3) and 4) is solved, using the primal-dual relationship, the optimal w satisfies  

and the decision function is shown in (6). 

 

𝑠𝑔𝑛 (𝑤𝑇  𝜑(𝑥) +  𝑏 ) = 𝑠𝑔𝑛(∑ 𝑦𝑖𝛼𝑖  𝑙
𝑖=1 𝐾( 𝑥𝑖 ,  𝑥𝑗 ) +  𝑏 ) #    (6) 

 

 

4. COMPUTATIONAL RESULTS AND FINDINGS 

There were experiments have been done on Acacia and Hevea Brasiliensis species to get the 

accuracy for each kernel function. Table 3 indicates all parameters were setting up for the data. There were 

50 experiments conducted to find the highest accuracy for each species. The splitting data were 70% for 

training and 30% for testing. 

 

 

Table 3. Parameter settings 
 Linear Kernel RBF Kernel Polynomial Kernel 

C 1,3,5 1,3,5 1,3,5 

Gamma - 0.01 - 

Degree - - 30 

 

 

4.1. Results for Acacia species 

 Several tests were performed to see the accuracy of the knot detection for Acacia Species using 

linear, RBF and polynomial kernel. The evaluation was based on the application of LBP as an extraction 

feature. Noise reduction and segmentation using different contrast values were performed prior to the 

extraction process. Table 4 shows the performance of knot detection using linear kernel function, where the 

parameter, C are 1, 2, and 3. It is demonstrated that the highest accuracy of 76% is reported, when using the 

percentile of contrast 10th and 98thn, C=5 and based on the extract the texture by LBP after segmentation.  

 

 

Table 4. Performance of knot detection for acacia species using linear Kernel function 
Linear kernel 

function, C 

Contrast (5,20) Contrast (10,98) 

Reduce noise (%) Segmentation (%) Reduce noise (%) Segmentation (%) 

1 59 62 62 72 

3 60 75 65 69 

5 65 69 62 76 

 

 

Meanwhile, the results of RBF kernel using gamma=0.001 has shown lower accuracy compared to 

linear kernel as demonstrated in Table 5. most have highest accuracy is 65%. Meanwhile, as shown in Table 

6, the performance of Polynomial Kernel seems better that RBF with the highest accuracy of 71%. 

 

 

Table 5. Performance of knot detection for Acacia species using RBF Kernel 

RBF Kernel 
Contrast (5,20) Contrast (10,98) 

Reduce noise (%) Segmentation (%) Reduce noise (%) Segmentation (%) 

1 65 63 65 65 

3 65 65 65 62 

5 62 65 65 65 

 

 

Table 6. Performance of knot detection for Acacia species using Polynomial Kernel 
Polynomial 

Kernel, C 

Contrast (5,20) Contrast (10,98) 

Reduce noise (%) Segmentation (%) Reduce noise (%) Segmentation (%) 

1 65 69 71 69 

3 68 65 65 71 

5 66 65 65 62 

 

4.2. Result for Hevea Brasiliensis species  

Tests were also performed to see the accuracy of the knot detection for Hevea Brasiliensis Species 

for the three kernels. The testing was based on noise reduction and segmentation using different contrast 

values after the extraction processes. Table 7 shows the performance of knot detection using linear kernel 
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function, where the parameter, C are 1, 2, and 3. It shows that the highest accuracy of 76% when using 

parameter C=5 and with segmentation and a contrast percentile of images of 5th and 20th.  

 

 

Table 7. Performance of knot detection for Hevea Brasiliensis using linear Kernel function 

Linear kernel 
Contrast (5,20) Contrast (10,98) 

Reduce noise (%) Segmentation (%) Reduce noise (%) Segmentation (%) 

1 71 73 68 68 

3 68 74 68 68 

5 71 76 66 63 

 

 

Table 8 shows the accuracy with the highest 73% with parameter C=3 when the contrast percentile 

of the image was 5th and 20th and the texture extracted by LBP after segmentation. 

 

 

Table 8. Performance of knot detection for Hevea Brasiliensis using RBF Kernel function 
RBF Kernel 

C 

Contrast (5,20) Contrast (10,98) 

Reduce noise (%) Segmentation (%) Reduce noise (%) Segmentation (%) 

1 1 68 71 71 

3 3 68 73 68 

5 5 68 68 69 

 

 

Table 9, it shows that the accuracy is harder to achieve more than 60%. However, 59% is the highest 

accuracy with C=3 when LBP after reduce noise and the contrast percentile at 5th and 20th. 

 

 

Table 9. Performance of knot detection for Hevea Brasiliensis using polynomial Kernel function 
Polynomial 

Kernel, 

Contrast (5,20) Contrast (10,98) 

Reduce noise (%) Segmentation (%) Reduce noise (%) Segmentation (%) 

1 53 48 48 50 

3 59 50 55 52 

5 56 50 53 58 

 

 

Overall, Linear Kernel function is outperformed than other functions in which the highest accuracy 

was performed by Linear Kernel function for the two species. Both species offered the same accuracy value 

of 76% as the highest accuracy.  The differences only on the percentile used.  

 

 

5. CONCLUSIONS 

This paper addresses the comparison of knot detection capability with the use of SVM for two 

species of the tropical timbers namely Acacia and Hevea Brasiliensis. Prior to performed detection, all 

images of the two species have gone through several pre-processing steps such as contrast stretching, median 

blur, thresholding with the Otsu’s method and feature extraction using Local Binary Pattern algorithm were 

used. C-SVM is used to perform the classification process. Overall, the achievement is only76% for knot 

detection. However, it can be seen as a good effort for knot detection for tropical timber at initial stage. With 

the improvement in pre-processing methods and experiment with recent classification methods, the solution 

has a big potential to aid timber expert or timber grader in recognizing types of knot with a better accuracy. 
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